
FPGA Analysis and Design of Embedded Processor Cores 
 
A) Introduction 

This report serves as the first report in compliance with the undergraduate independent study 
course titled “FPGA Analysis and Design of Embedded Processor Cores” during the 2005 fall 
semester at Arizona State University. The objective is to study the benefits of FPGA’s with 
embedded processors. A comparative study will be made with a few of the more popular options 
available today. This would include both “hard” cores (e.g. PowerPC in the Vertex-II Pro FPGA) 
and “soft” cores (e.g. PicoBlaze 8-bit microcontroller core offered by Xilinx).  

The Field Programmable Gate Array (FPGA) is a relatively new technology that has made a 
huge impact on embedded computing. The FPGA is a programmable logic device that gives its 
designer, not its manufacture; the flexibility to implement virtually any customized digital logic 
circuit. This has given digital logic designers a revolutionary new level of flexibility at an 
increasingly smaller cost and development time. The FPGA is based on CMOS technology and does 
not have any on-chip non-volatile memory. Therefore it has to be programmed or configured at each 
power up using an off-chip non-volatile memory source such as flash memory. This initializing boot 
up time is very small and will meet most application specifications. The programming languages 
used to program FPGAs are called Hardware Descriptive Languages (HDLs) of which there are two 
commonly used; VHDL and Verilog. 

So why would a designer use an 
FPGA? One very big reason is integration. 
The ability to decrease the number of 
components on your application board 
saves cost and power consumption. In the 
early days of FPGAs, they would be used 
to replace 7400 style discreet logic chips. 
But as CMOS technology has improved, 
FPGAs have been getting cheaper and 
bigger, not only making them more cost 
effective, but also increasing the 
complexity of logic implemented inside 
the FPGA providing for more and more 
integration.  

Not only have the size of the FPGA increased, but a number of key resources such as on-chip 
memory, hardware multipliers, and Digital Clock Managers (DCMs) have been built into an FPGA 
making it possible to implement an entire System-On-Chip (SOC) application. This could include 
one or more “soft-core” processors described entirely with an HDL language and programmed into 
the FPGA’s reconfigurable logic. This is now referred to as a system-on-a-programmable-chip 
(SOPC) application. Another feature of some of the latest FPGAs include an actual hardware 
processor core manufactured into the FPGA and interfaced with the FPGA’s reconfigurable logic. 
They are called “hard-core” processors. 

 



B) Hardware or software? Reasons to use an FPGA embedded core. 
When it comes to considering the use of an embedded processor in your FPGA, there are two 

different perspectives. One perspective is from a designer already accustomed to developing 
applications with a stand alone microprocessor. They may or may not have already used an FPGA 
for other logic functions and are considering embedding the processor within the FPGA.  The 
question for this person might be; why integrate the processor into the FPGA? The other perspective 
is from a designer who may never have used a microprocessor and is only concerned with best 
utilizing the FPGA for the application at hand. For which case, the question then becomes; why use 
a processor at all? I intend on answering both these questions below.  

First, there is the inherent flexibility of an FPGA and then there is the freedom to split your 
application’s tasks between hardware and software. First the flexibility.  

Never before has an embedded application designer had such flexibility as that available in 
today’s FPGA solutions. In a traditional embedded microprocessor application, a designer is 
restricted to the number of I/O pins available, the peripheral functions available, as well as which 
functions can be implement on which pins. This can make a Printed Circuit Board (PCB) design 
very complicated and costly. An FPGA is free to rout any logic function or peripheral function to 
any I/O pin on the chip. An example of a peripheral function includes PWM, USART, I2C, SPI, and 
Timers. A processor implemented on an FPGA is free to customize just the right number of needed 
peripherals need making for a more efficient application. Similar functions can also share resources 
providing for even more efficiency.  

Also, once the PCB and hardware is built, the number of available changes or upgrades 
becomes very limited. With an FPGA solution, simple modifications to the HDL code can fix bugs 
or implement significant system level upgrades providing for increased life span and support for 
minimal cost. A FPGAs design and testing can continue even after the application has been 
manufactured by re-programming the FPGA in-field. Then there’s the issue of portability. An 
FPGA’s HDL Intellectual Property (IP) is much easier to port to newer technologies, packages, or 
even different platforms entirely when compared to the traditional stand alone microprocessor which 
has to be partially or fully re-designed each time it changes platforms. A processor’s migration into 
an FPGA provides gained flexibility, performance, decreased costs, and sooner time to market. No 
more obsolescence here. 

Also, a single processor has a limit to the number of tasks in can implement at once. As the 
number tasks increases, so does the complexity and effort required to test and debug. Using multiple 
processors solves this problem by simplifying the software development. Doing this is much easier 
on an FPGA. The only limitations are the size of the logic within the FPGA as well as the number 
pins available on the package. Tools such as the Chipscope from Xilinx make monitoring and 
debugging signals within the FPGA very easy. 

Now the question, should a task be done in hardware or software?  
Some background; A traditional standalone processor executes software or code usually written 

in C which is made up of a listing of sequential instructions. Indeed, almost anything can be done in 
code by sequentially manipulating data stored in memory or registers and then manipulating the 
voltage presented at I/O pins by again, writing to the correct register. This can get very complex, 
slow, and very tedious. So a traditional processor will also come with a set of hardware modules 
called peripherals that will implement certain functions in hardware. A processor will manipulate 
these peripherals through registers. An example would be a PWM module. Instead of writing code 
that will time out and manually toggle the I/O pin at the correct duty cycle and period, we can simply 
write a duty cycle and period value to the correct registers and the hardware module will 
automatically run the I/O pin at the correct duty cycle and period. This leaves the processor free to 
do other stuff. A processor, like a Digital Signal Processor (DSP) for example, can also assign a 
hardware module to a dedicated instruction code like multiplication. It is common for a DSP to have 
a Multiply and Accumulate (MAC) unit that can complete a multiplication and addition operation in 
one instruction. This dedicated hardware greatly improves performance and speed. The processor 
manufacture dictates both the instruction set and the peripheral set. Wouldn’t it be neat to customize 



the entire processor to have exactly the hardware and functionality you need and nothing you don’t 
need? With an FPGA you can.  

And this is where the original question comes 
in. What should be done in dedicated hardware and 
what should be done in software run by the 
embedded processor? Do we need a processor at all? 
A processor, by its very nature, executes its tasks 
sequentially or serially. It does do a very good job of 
time sharing its resources between tasks. But there is 
a limit to the number of things it can do at one time. 
The FPGA has an added benefit of being naturally 
conducive to parallelism. Custom logic can be 
configured to perform many things at once. The 
figures one an two demonstrate the difference when 
implementing an FIR filter. A DSP processor will 
execute a MAC operation 256 times sequentially in a 
loop for each output sample. The FPGA can compute 

the whole sample at once 
using dedicated registers 
and multipliers for each 
tap of the filter. 

So why not do 
everything in parallel? 
The FPGA has its limits. 
Some of the lower end 
FPGA’s have very few 
hardware multipliers. The 
excellent memory 
management and time 
sharing properties of a 
processor can make use of 
the hardware multipliers 
in an efficient manner. 
More efficient than simply 
adding more lower speed 
custom logic multipliers. 
The embedded processors 
are also great for 
implementing complex but 
non-time critical state 
machines. 
 
 
 
 
 
 
 
 

 
Figure 3 An IIR filter on an FPGA 
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Figure 1 A 256 tap FIR filter on a DSP 
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Figure 2 A 356 tap FIR filter on an FPGA 
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C) Soft cores 

Some of the more popular soft core processors include the ones offered by the FPGA 
manufactures. For example, the Nios from Altera and the MicroBlaze from Xilinx provide a wide 
range of customizable options. Table 1 shows some of there respective features. 

Most of these kinds of processors will 
be programmable in C. C is the de-facto 
standard in the embedded systems market 
and will provide for easily portable IP. 

These soft processor cores will also 
come with the tools needed to develop with 
them. Xilinx for example sells it’s 
Embedded Development Kit (EDK) which 
includes all the needed IP, including the 
actual MicroBlaze soft core, The GNU C 
code development tools, as well as the 
Processor Core Configuration Tool which 
automates most of the configuration of the 
processor. Some of the configuration 
options include register file size, hardware 
multiply and divide, interrupts, and I/O 
hardware. Core Connect is another peace of 
IP that provides the best means foe 
connecting the processor to various 

peripherals.  
Another very common soft core is the PicoBlaze also offered by Xilinx. PicoBlaze is a very 

small 8-bit microcontroller which can fit in only 96 CLBs of the FPGA. Originally called 
(K)constant Coded Programmable State Machine (KCPSM), it is a core used in less time critical 
applications and excels in implementing complex state machines that may be far more difficult to 
implement in custom logic. Other good uses include applications where many things are being 
integrated into the FPGA. Many of the devices that you would need to then interface are expecting to 
communicate with a processor. A Hatachi based LCD for example expects an initialization process 
heavily reliant on the data being in a specific order with particular timing. The PicoBlaze makes for 
a great co-processor. When a MicroBlaze application for example is getting complicated, sometimes 
the easiest thing to do is to offload some of the non-critical tasks to the PicoBlaze. 

In an effort to decrease complexity and increase ease of use, Xilinx has recently produced a 
powerful new tool called System Generator that allows one to design, develop, and simulate entire 
applications using Simulink from Mathworks. System Generator is a Simulink add on that provides 
its own custom processing blocks that can be synthesized into VHDL and programmed into an 
FPGA. This gives the user a powerful new method for implementing MATLAB/Simulink style 
algorithms and control systems targeted directly for an FPGA. 

One such block implements the PicoBlaze soft core. Figure 4 shows an example 
implementation used to interface to hardware buttons, switches, and LEDs. The PicoBlaze is well 
suited to this kind of task as user interfaces are usually not very time critical. This PicoBlaze can 
then be used by any other part of the application to interface to the user. 

 
 



D) FPGA re-configuration 
With so many different things being integrated onto a single FPGA, re-use of IP becomes more 

and more important. Dynamic re-configuration of an FPGA is a new area of study that involves 
dynamically changing a FPGAs configuration during operation. This has the possibility of 
improving area, timing and power characteristics. The ability to change, update, or even learn new 
functionality during the lifetime operation of an application provides for an awesome range of 
possibilities.  

Currently available FPGAs do not have the technology to re-configure any one portion of its 
circuitry without interrupting the whole thing. Even the smallest change in the logic configuration 
requires a re-programming of the entire chip. Some applications can work this way. For example, an 
intelligent device can hold more than one FPGA configuration in non-volatile memory. During 
production, it can easily be set to configure the FPGA with a soft core charged with testing it’s 
functionality and then once finished, it can re-configure the FPGA for final operation. 

However, researchers are finding applications for Dynamic re-configuration of any one portion 
of the FPGA would be very useful. For example, A paper titled “Investigating Dynamic 
Reconfiguration of FPGA based IP Cores” has found a class of circuits that can take advantage of 
such a technology. 
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Figure 3 PicoBlaze application 


