
FPGA Analysis and Design of Embedded Processor Cores

A) Introduction

This report serves as the first report in compliance with the undergraduate independent study
course titled “FPGA Analysis and Design of Embedded Processor Cores” during the 2005 fall
semester at Arizona State University. The objective is to study the benefits of FPGA’s with
embedded processors. A comparative study will be made with a few of the more popular options
available today. This would include both “hard” cores (e.g. PowerPC in the Vertex-II Pro FPGA)
and “soft” cores (e.g. PicoBlaze 8-bit microcontroller core offered by Xilinx).

The Field Programmable Gate Array (FPGA) is a relatively new technology that has made a
huge impact on embedded computing. The FPGA is a programmable logic device that gives its
designer, not its manufacture; the flexibility to implement virtually any customized digital logic
circuit. This has given digital logic designers a revolutionary new level of flexibility at an
increasingly smaller cost and development time. The FPGA is based on CMOS technology and does
not have any on-chip non-volatile memory. Therefore it has to be programmed or configured at each
power up using an off-chip non-volatile memory source such as flash memory. This initializing boot
up time is very small and will meet most application specifications. The programming languages
used to program FPGAs are called Hardware Descriptive Languages (HDLs) of which there are two
commonly used; VHDL and Verilog.

So why would a designer use an
FPGA? One very big reason is integration.
The ability to decrease the number of
components on your application board
saves cost and power consumption. In the
early days of FPGAs, they would be used
to replace 7400 style discreet logic chips.
But as CMOS technology has improved,
FPGAs have been getting cheaper and
bigger, not only making them more cost
effective, but also increasing the
complexity of logic implemented inside
the FPGA providing for more and more
integration.

Not only have the size of the FPGA increased, but a number of key resources such as on-chip
memory, hardware multipliers, and Digital Clock Managers (DCMs) have been built into an FPGA
making it possible to implement an entire System-On-Chip (SOC) application. This could include
one or more “soft-core” processors described entirely with an HDL language and programmed into
the FPGA’s reconfigurable logic. This is now referred to as a system-on-a-programmable-chip
(SOPC) application. Another feature of some of the latest FPGAs include an actual hardware
processor core manufactured into the FPGA and interfaced with the FPGA’s reconfigurable logic.
They are called “hard-core” processors.

B) Hardware or software? Reasons to use an FPGA embedded core.
When it comes to considering the use of an embedded processor in your FPGA, there are two

different perspectives. One perspective is from a designer already accustomed to developing
applications with a stand alone microprocessor. They may or may not have already used an FPGA
for other logic functions and are considering embedding the processor within the FPGA. The
question for this person might be; why integrate the processor into the FPGA? The other perspective
is from a designer who may never have used a microprocessor and is only concerned with best
utilizing the FPGA for the application at hand. For which case, the question then becomes; why use
a processor at all? I intend on answering both these questions below.

First, there is the inherent flexibility of an FPGA and then there is the freedom to split your
application’s tasks between hardware and software. First the flexibility.

Never before has an embedded application designer had such flexibility as that available in
today’s FPGA solutions. In a traditional embedded microprocessor application, a designer is
restricted to the number of I/O pins available, the peripheral functions available, as well as which
functions can be implement on which pins. This can make a Printed Circuit Board (PCB) design
very complicated and costly. An FPGA is free to rout any logic function or peripheral function to
any I/O pin on the chip. An example of a peripheral function includes PWM, USART, I2C, SPI, and
Timers. A processor implemented on an FPGA is free to customize just the right number of needed
peripherals need making for a more efficient application. Similar functions can also share resources
providing for even more efficiency.

Also, once the PCB and hardware is built, the number of available changes or upgrades
becomes very limited. With an FPGA solution, simple modifications to the HDL code can fix bugs
or implement significant system level upgrades providing for increased life span and support for
minimal cost. A FPGAs design and testing can continue even after the application has been
manufactured by re-programming the FPGA in-field. Then there’s the issue of portability. An
FPGA’s HDL Intellectual Property (IP) is much easier to port to newer technologies, packages, or
even different platforms entirely when compared to the traditional stand alone microprocessor which
has to be partially or fully re-designed each time it changes platforms. A processor’s migration into
an FPGA provides gained flexibility, performance, decreased costs, and sooner time to market. No
more obsolescence here.

Also, a single processor has a limit to the number of tasks in can implement at once. As the
number tasks increases, so does the complexity and effort required to test and debug. Using multiple
processors solves this problem by simplifying the software development. Doing this is much easier
on an FPGA. The only limitations are the size of the logic within the FPGA as well as the number
pins available on the package. Tools such as the Chipscope from Xilinx make monitoring and
debugging signals within the FPGA very easy.

Now the question, should a task be done in hardware or software?
Some background; A traditional standalone processor executes software or code usually written

in C which is made up of a listing of sequential instructions. Indeed, almost anything can be done in
code by sequentially manipulating data stored in memory or registers and then manipulating the
voltage presented at I/O pins by again, writing to the correct register. This can get very complex,
slow, and very tedious. So a traditional processor will also come with a set of hardware modules
called peripherals that will implement certain functions in hardware. A processor will manipulate
these peripherals through registers. An example would be a PWM module. Instead of writing code
that will time out and manually toggle the I/O pin at the correct duty cycle and period, we can simply
write a duty cycle and period value to the correct registers and the hardware module will
automatically run the I/O pin at the correct duty cycle and period. This leaves the processor free to
do other stuff. A processor, like a Digital Signal Processor (DSP) for example, can also assign a
hardware module to a dedicated instruction code like multiplication. It is common for a DSP to have
a Multiply and Accumulate (MAC) unit that can complete a multiplication and addition operation in
one instruction. This dedicated hardware greatly improves performance and speed. The processor
manufacture dictates both the instruction set and the peripheral set. Wouldn’t it be neat to customize

the entire processor to have exactly the hardware and functionality you need and nothing you don’t
need? With an FPGA you can.

And this is where the original question comes
in. What should be done in dedicated hardware and
what should be done in software run by the
embedded processor? Do we need a processor at all?
A processor, by its very nature, executes its tasks
sequentially or serially. It does do a very good job of
time sharing its resources between tasks. But there is
a limit to the number of things it can do at one time.
The FPGA has an added benefit of being naturally
conducive to parallelism. Custom logic can be
configured to perform many things at once. The
figures one an two demonstrate the difference when
implementing an FIR filter. A DSP processor will
execute a MAC operation 256 times sequentially in a
loop for each output sample. The FPGA can compute

the whole sample at once
using dedicated registers
and multipliers for each
tap of the filter.

So why not do
everything in parallel?
The FPGA has its limits.
Some of the lower end
FPGA’s have very few
hardware multipliers. The
excellent memory
management and time
sharing properties of a
processor can make use of
the hardware multipliers
in an efficient manner.
More efficient than simply
adding more lower speed
custom logic multipliers.
The embedded processors
are also great for
implementing complex but
non-time critical state
machines.

Figure 3 An IIR filter on an FPGA

Data In

Data Out

MAC unit
Loop
Algorithm
256 times

Register

Figure 1 A 256 tap FIR filter on a DSP

Data In x(n)

C0 C2 C1 C255

Reg0 Reg1 Reg2 Reg255

Data Out y(n)

)(......)1()()(10 mnxbnxbnxbny m −++−+=
Figure 2 A 356 tap FIR filter on an FPGA

Data Out
y(n)

Z-1 (Reg1)

Data In
x(n)

Z-1 (Reg0)

a2

a1 b1

b2

b0

)2()1()2()1()()(21210 −+−+−+−+= nyanyanxbnxbnxbny

C) Soft cores

Some of the more popular soft core processors include the ones offered by the FPGA
manufactures. For example, the Nios from Altera and the MicroBlaze from Xilinx provide a wide
range of customizable options. Table 1 shows some of there respective features.

Most of these kinds of processors will
be programmable in C. C is the de-facto
standard in the embedded systems market
and will provide for easily portable IP.

These soft processor cores will also
come with the tools needed to develop with
them. Xilinx for example sells it’s
Embedded Development Kit (EDK) which
includes all the needed IP, including the
actual MicroBlaze soft core, The GNU C
code development tools, as well as the
Processor Core Configuration Tool which
automates most of the configuration of the
processor. Some of the configuration
options include register file size, hardware
multiply and divide, interrupts, and I/O
hardware. Core Connect is another peace of
IP that provides the best means foe
connecting the processor to various

peripherals.
Another very common soft core is the PicoBlaze also offered by Xilinx. PicoBlaze is a very

small 8-bit microcontroller which can fit in only 96 CLBs of the FPGA. Originally called
(K)constant Coded Programmable State Machine (KCPSM), it is a core used in less time critical
applications and excels in implementing complex state machines that may be far more difficult to
implement in custom logic. Other good uses include applications where many things are being
integrated into the FPGA. Many of the devices that you would need to then interface are expecting to
communicate with a processor. A Hatachi based LCD for example expects an initialization process
heavily reliant on the data being in a specific order with particular timing. The PicoBlaze makes for
a great co-processor. When a MicroBlaze application for example is getting complicated, sometimes
the easiest thing to do is to offload some of the non-critical tasks to the PicoBlaze.

In an effort to decrease complexity and increase ease of use, Xilinx has recently produced a
powerful new tool called System Generator that allows one to design, develop, and simulate entire
applications using Simulink from Mathworks. System Generator is a Simulink add on that provides
its own custom processing blocks that can be synthesized into VHDL and programmed into an
FPGA. This gives the user a powerful new method for implementing MATLAB/Simulink style
algorithms and control systems targeted directly for an FPGA.

One such block implements the PicoBlaze soft core. Figure 4 shows an example
implementation used to interface to hardware buttons, switches, and LEDs. The PicoBlaze is well
suited to this kind of task as user interfaces are usually not very time critical. This PicoBlaze can
then be used by any other part of the application to interface to the user.

D) FPGA re-configuration
With so many different things being integrated onto a single FPGA, re-use of IP becomes more

and more important. Dynamic re-configuration of an FPGA is a new area of study that involves
dynamically changing a FPGAs configuration during operation. This has the possibility of
improving area, timing and power characteristics. The ability to change, update, or even learn new
functionality during the lifetime operation of an application provides for an awesome range of
possibilities.

Currently available FPGAs do not have the technology to re-configure any one portion of its
circuitry without interrupting the whole thing. Even the smallest change in the logic configuration
requires a re-programming of the entire chip. Some applications can work this way. For example, an
intelligent device can hold more than one FPGA configuration in non-volatile memory. During
production, it can easily be set to configure the FPGA with a soft core charged with testing it’s
functionality and then once finished, it can re-configure the FPGA for final operation.

However, researchers are finding applications for Dynamic re-configuration of any one portion
of the FPGA would be very useful. For example, A paper titled “Investigating Dynamic
Reconfiguration of FPGA based IP Cores” has found a class of circuits that can take advantage of
such a technology.

References:
1. TechXclusives articles, http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp “Performance + Time = Memory (Cost savig

with 3-D design)” by Ken Chapman

2. Karen Parnell, Roger Bryner, “Comparing and Contrasting FPGA and Microprocessor System Design and

Development” Xilinx WP213 (v1.1) July 21, 2004

3. Tyson S. Gall, “System-on-a-Programmable-Chip Development Platforms in the Classroom” IEEE transactions on

Education, Vol. 47, No 4, Nov 2004

4. Ken Chapman, “PicoBlaze KCPSM3 8-bit Micro Controller for Spartan-3, Virtex-II and Virtex-IIPRO” Xilinx

KCPSM3_Manual.pdf Rev. 7 October 2003 z

5. TechXclusives articles, http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp “Creating Embedded Microcontrollers

(Programmable State Machines)” by Ken Chapman

6. “PowerPC Processor Reference Guide” www.xilinx.com EDK 6.1 September 2, 2003

7. Roman Lysecky, “A Study of the Speedups and Cometitiveness of FPGA Soft Processor Cores using Dynamic

Hardware/Software Partitioning”

8. Jeremy Kowalczyk, “Multiprocessor Systems” Xilinx WP162 (v1.1) April 10, 2003

9. Patrick Lysaght, John MacBeth, “Investigatin Dynamic Reconfiguration of FPGA Based IP Cores”

10. Tiecai Li,“ECOMIPS: An Economic MIPS CPU Design on FPGA” Proceedings of the 4th IEEE International Workshop

on System-on-Chip for Real-Time Applications (IWSOC’04)

11. Jan Gray, “Building a RISC CPU and System-on-a-Chip in an FPG” Copyright © 1998-2000, Gray Research LLC.
12. Kevin Morris, “Prime-time Processing, Are Embedded Systems on FPGA Ready?” FPGA and Programmable Logic

Journal February 8th, 2005
13. TechXclusives articles, http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp “The Root of All Evil” by Richard Griffin

Figure 3 PicoBlaze application

