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929 SCE

Signal Conditioning In The 
Embedded World
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Class Objectives

When you walk out, you will know

What makes up the embedded signal chain?
How do you get the information you need 
from your signal?
How can this be applied to a control loop?
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Class Agenda

The Embedded Signal Chain
- Sensor Interfacing
- Analog Signal Conditioning
- Analog to Digital (A/D) Conversion 
- Digital Filtering
- Control Algorithms
- Actuator Interfacing
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The Embedded Signal Chain
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The Embedded Signal Chain
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The Embedded Signal Chain
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Sensor Interfacing

Sensors generate voltage, resistance, or 
current
Must be translated into a variable voltage for 
analog to digital conversion
AN990 -Analog Sensor Conditioning Circuits
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Sensor Interfacing

A potentiometer provides mechanical 
feedback, e.g. angle, position

Vdd/2
VoVdd

Angle 
Potentiometer

60.4K

10K
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Sensor Interfacing
Interfacing the thermistor
with a voltage divider
- Voltage divider configuration 

helps with linearity
- Rs should be equal to 

thermistor at mid-point of 
temperature range

- For ± 25 oC temperature 
range ± 1% error

AN685 - Thermistors in 
Single Supply Temperature 
Sensing Circuits

Rs

NTC

Vref

Vout
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Sensor Interfacing

Possible error sources
- Component tolerances

- Electrical Fast Transient (EFT) signals (e.g. 
high speed digital, high current/power drive 
circuits)

- Electrostatic Discharge (ESD)

+/- 1%
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The Embedded Signal Chain

Analog Signal Conditioning
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Analog Signal Conditioning 

Why do you need analog signal 
conditioning?
- Filter out high frequency noise (e.g. anti-aliasing)
- Add gain to increase signal resolution

- Level shifting
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Analog Signal Conditioning
A single order passive RC filter attenuates by 
20 dB/decade beyond fc or the 3 dB cutoff 
frequency
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Active Filtering

Single pole active filters have same 
frequency response with lower output 
impedance 
Can gain a signal
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Sallen Key Second Order Filter
High input impedance, non-inverting, unity 
gain
Implement Bessel, Chebyshev, Butterworth, 
Elliptical or other filter types
Implement lowpass, highpass, bandpass, 
band stop Low pass Sallen Key filter

© 2005 Microchip Technology Incorporated. All Rights Reserved. Class Slide      16

Multiple Feedback Active Filter
Lower input impedance than Sallen Key
Inverting with gain or attenuation of G = -R2/R1
Less sensitive than Sallen Key to component 
tolerances
Pay attention to reference voltage with single 
supply op-amps Low pass multiple feedback filter

Ref
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Filter Response

The higher the order the steeper the response
Use multiple second order stages to get 
required results
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Active Filter Design
Use a design program such as Filterlab from 
Microchip
Specify key filter performance factors
The op-amp’s open loop bandwidth should be at 
least 100 times the filters bandwidth at the cutoff 
frequency

cc
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Frequency Response

Step Response

Butterworth    Chebyshev       Bessel

Butterworth    Chebyshev       Bessel
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The Embedded Signal Chain

Analog to Digital Conversion
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A/D conversion
Sampling and Quantization

4-bit (16 level) ADC sampling a sinewave input, time domain

Input  Sinewave

ADC Output

Quantization Error

TIME

OUTPUT
DIGITAL
WORD
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0010
0011
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0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

2 3 4 5 6 7 8 9 10 11 12 13
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A/D conversion

Ideal signal to noise ratio (SNR) of A/D in dB 

- N = A/D resolution in bits
- Ideal SNR is 62 dB for 10 bit A/D

][76.102.6 dBNSNR +⋅=
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A/D conversion

Sample
Quantization

Output impedance
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The Alias Effect

Satisfy Nyquist Sampling Theorem to retain 
signal information

- Fs - Sample frequency   
- Fin - Input signal frequency

Get an image Fi if Nyquist conditions are not 
met

- n - integer

FinFs ⋅≥ 2

FinFsnFi ±⋅=
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The Alias Effect

Input signals above Fs/2 will be folded back 
(aliased) down to a lower frequency
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The Alias Effect in action

Filter:
- Sallen-Key, Bessel, G=6, Fc = 30 Hz

What happens without proper anti-aliasing?

[simple schematic]
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The Embedded Signal Chain

Digital Filtering

Sensor  
Interface

(potentiometer)

Analog 
Signal 

Conditioning
A/D 

Converter

Control 
Algorithm 

(PID)

Actuator 
Interface  

(H-bridge)

Actuator
(Motor)

PIC16F785

Plant
(Pendulum)

Interface 
circuitry

Digital 
Filter

© 2005 Microchip Technology Incorporated. All Rights Reserved. Class Slide      28

Digital Filtering

Finite Impulse Response (FIR) filters do not 
have feedback 
Infinite Impulse Response (IIR) filters have 
feedback 
Efficient digitals filters

X(t)
LP filter

H(s)
A/D Digital Filter 

H(z)

X(n) Y(n)
D/A

LP filter

H(s)
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FIR Filter

Difference equation

With order of “m”

)(......)1()()( 10 mnxbnxbnxbny m −++−+=
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Designing a FIR Filter

Filter coefficients are based on a given 
window function H[n]
Different window functions have different 
performance and filter length requirements

TimeFrequency

Brick Wall Response Sync(x)
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Designing a FIR Filter

FIR filter has a constant group delay
Processor intensive with respect to filter 
length (order)
Use a filter coefficient program such as 
dsPICworks or dsPIC FD Lite from Microchip
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Folded FIR Filter
If coefficients 
symmetrical 

(b0=b5 b1=b4 b2=b3)

Use folded FIR filter 
to reduce multiply 
instructions
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Moving Average Filters
Simply taking the moving average of a number of 
samples, the filter has M points

∑
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Very good at removing switching noise and random 
noise 
Is very fast especially if M is a power of 2, i.e. 2, 4, 
8, 16 etc allows one to shift instead of divide
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Recursive Implementation

Two adjacent outputs of a moving average 
filter
- y(50)=x(50)+x(49)+x(48)+ x(47)+x(46)+x(45)
- y(51)=x(51)+x(50)+x(49)+x(48)+ x(47)+x(46)
- => y(51)=y(50)+x(51)-x(45)
- General case: y(n)=y(n-1)+x(n)-x(n-M)
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Moving Average Filter Examples
Original Signal

8 Point Moving Average

16 Point Moving AverageOriginal Signal 16 Point Moving Average

2 Pass 8 Point Moving Average Filter
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IIR Filter
A second order IIR filter uses feedback and 
it’s difference equation is

)2()1()2()1()()( 21210 −+−+−+−+= nyanyanxbnxbnxbny
The coefficient b0 gives the DC gain, typically unity
Use multiple stages to get desired order
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IIR Filter Characteristics

Normally more efficient than FIR
Can implement Chebyshev, Butterworth, and 
Elliptic 
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IIR Filter Design

Use a filter coefficient program such as 
dsPICworks or dsPIC FD Lite from Microchip

High Q stages can lead to instability due to 
rounding 
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Efficient Filters

Keep bits in the multiplier functions to a 
minimum and implement own multiplier 
Look into different numbering schemes:
- Fixed Point signed/unsigned 
- Floating point
- Two’s complement
- Fractional two’s complement or Qx

Double check filter function for saturation 
and stability - IIR especially

© 2005 Microchip Technology Incorporated. All Rights Reserved. Class Slide      40

Efficient Filters
Can speed up FIR and IIR filters by rounding off 
the filter coefficients
- Round by inspection to allow shift and add instead of 

multiply
Use two or three shift and add routines instead of a 
multiply routine
- Need to multiply x(n) by 10010101 (dec 149)
- 10010000 (dec 144) => error = -5 
- 10100000 (dec 160) => error = +11 x
- x(n)*10010101 ≈ x(n)<<7 + x(n)<<4 = x(n)*27+x(n)*24

To multiply y(n) by 00001011(dec 11) 
- 00001100 (dec 12) => error = +1
- 00001010 (dec 10) => error = -1
- In general round down for y(n)
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Efficient Filters
Consider convergent (unbiased) rounding 
instead of conventional or biased rounding -
IIR especially
Use pointers instead of shifting data
Will a less expensive microcontroller do the 
job?
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Efficient Filters
Using unsigned filter coefficients is sometimes 
beneficial
For scaled filter coefficients between -128 and 127 
convert these to 0 to 255
- Start with difference equation:

)2()1()2()1()()( 21210 −+−+−+−+= nyanyanxbnxbnxbny
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Which to Use, Analog or Digital?

Digital Filters
- Highly repeatable 

and stable
- Adaptable
- Always needs 

power
- Quantization and 

rounding noise and 
errors

Analog Filters
- Component variations 

affects performance
- Fixed characteristics
- Can be passive

- Noise susceptible 
from conducted, 
radiated and thermal
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The Embedded Signal Chain
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Microchip in Control

r - reference signal
e[n] - error signal
K[z] - controller transfer function (PID)
G(s) - plant transfer function
H(s) - sensor transfer function
y(t) - output of controlled system

D/AK[z]

A/D

G(s)
e[n]

y[n]
Plant

Y(t)r[n]

H(s)
Sensor

Actuator

AAF/SC

Anti-Aliasing 
Signal Conditioning
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Use a Proportional-Integral-Derivative (PID)  loop 
to control a system
- Reduce overshoot
- Improve stability
- Improved Performance

Microchip in Control
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PID Loop
The PID controller has a transfer function
- KP - proportional gain, KI - integral gain, KD - derivative 

gain, e[z] - error input signal to PID loop and u[z] - PID 
control signal
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PID Loop
Tuning the PID parameters
- Demo

How does each PID constant affect the System’s 
stability? Overshoot? Response time?
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The Embedded Signal Chain
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Actuator Interfacing

Use of PWM for motor control

Period
Pulse 
Width

Period
WidthPulseCycleDuty __ =

CycleDutyVddVoltageMotor _*_ =

© 2005 Microchip Technology Incorporated. All Rights Reserved. Class Slide      51

H-Bridge
Actuator Interfacing
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Micro
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Summary
The Embedded Signal Chain
- Sensor Interfacing
- Analog Signal Conditioning
- A/D Conversion 
- Digital Filtering
- PID Control
- Actuator Interfacing

Identify possible performance improvement 
techniques to get the most out of your signal
PID controllers can be very powerful tools towards 
improving embedded control
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