

Sensor Interfacing

- Sensors generate voltage, resistance, or current
- Must be translated into a variable voltage for analog to digital conversion
- AN990 -Analog Sensor Conditioning Circuits

Sensor Interfacing

- Interfacing the thermistor with a voltage divider
 - Voltage divider configuration helps with linearity
 - Rs should be equal to thermistor at mid-point of temperature range
 - For ± 25 °C temperature range ± 1% error
- AN685 Thermistors in Single Supply Temperature Sensing Circuits

Slide

Vref

Slide 7

The Embedded Signal Chain

Analog Signal Conditioning

Slide 12

Analog Signal Conditioning A single order passive RC filter attenuates by 20 dB/decade beyond *f_c* or the 3 dB cutoff

Sallen Key Second Order Filter

- High input impedance, non-inverting, unity gain
- Implement Bessel, Chebyshev, Butterworth, Elliptical or other filter types
- Implement lowpass, highpass, bandpass, band stop

Filter Response

- The higher the order the steeper the response
- Use multiple second order stages to get required results

Slide 17

Active Filtering

- Single pole active filters have same frequency response with lower output impedance
- Can gain a signal

Multiple Feedback Active Filter

- Lower input impedance than Sallen Key
- Inverting with gain or attenuation of $G = -R_2/R_1$
- Less sensitive than Sallen Key to component tolerances
- Pay attention to reference voltage with single supply op-amps

Active Filter Design

- Use a design program such as Filterlab from Microchip
- Specify key filter performance factors
- The op-amp's open loop bandwidth should be at least 100 times the filters bandwidth at the cutoff frequency

- Consider convergent (unbiased) rounding instead of conventional or biased rounding -**IIR** especially
- Use pointers instead of shifting data
- Will a less expensive microcontroller do the iob?

- Using unsigned filter coefficients is sometimes beneficial
- For scaled filter coefficients between -128 and 127 convert these to 0 to 255
 - Start with difference equation:

 $y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) + a_1 y(n-1) + a_2 y(n-2)$ $y(n)^{1} = (b_{0} + 128)x(n) + (b_{1} + 128)x(n-1) + (b_{2} + 128)x(n-2)$ $+(a_1+128)y(n-1)+(a_2+128)y(n-2)$ $X(n) = x(n) \cdot 128 + x(n-1) \cdot 128 + x(n-2) \cdot 128$

```
y(n) = y^1(n) - X(n)
```

Slide 41

PID Loop

- The PID controller has a transfer function
 - K_P proportional gain, K_I integral gain, K_D derivative gain, e[z] - error input signal to PID loop and u[z] - PID control signal

$$K[z] = \frac{u[z]}{e[z]} = K_P + \frac{K_I}{1 - z^{-1}} + K_D(1 - z^{-1})$$
setpoint $\stackrel{+}{\longrightarrow} + \underbrace{\int_{dt} \to 0}_{feedback}$

Slide 47

PID Loop

- Tuning the PID parameters
 - Demo
- How does each PID constant affect the System's stability? Overshoot? Response time?

